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Introduction to Machine Learning

ML-Basics
What is Machine Learning?

Learning goals
Understand basic terminology of and
connections between ML, AI, DL and
statistics

Know the main directions of ML:
Supervised, Unsupervised and
Reinforcement Learning



MACHINE LEARNING IS CHANGING OUR WORLD

Search engines learn what you want

Recommender systems learn your taste in books, music, movies,...

Algorithms do automatic stock trading

Google Translate learns how to translate text

Siri learns to understand speech

DeepMind beats humans at Go

Cars drive themselves

Smart-watches monitor your health

Election campaigns use algorithmically targeted ads to influence
voters

Data-driven discoveries are made in physics, biology, genetics,
astronomy, chemistry, neurology,...

...
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THE WORLD OF ARTIFICIAL INTELLIGENCE

... and the connections to Machine Learning and Deep Learning

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

Many people are confused what these terms actually mean.

And what does all this have to do with statistics?
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ARTIFICIAL INTELLIGENCE

AI is a general term for a very large and rapidly developing field.

There is no strict definition of AI, but it’s often used when machines
are trained to perform on tasks which until that time could only be
solved by humans or are very difficult and assumed to require
"intelligence".

AI started in the 1940s - when the computer was invented.
Scientists like Turing and John von Neumann immediately asked
the question: If we can formalize computation, can we use
computation to formalize "thinking"?

AI includes machine learning, natural language processing,
computer vision, robotics, planning, search, game playing,
intelligent agents, and much more.

Nowadays, AI is a "hype" term that many people use when they
should probably say: ML or ... basic data analysis.
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MACHINE LEARNING

Image via https://www.oreilly.com/library/view/java-deep-learning/
9781788997454/assets/899ceaf3-c710-4675-ae99-33c76cd6ac2f.png

Mathematically well-defined and
solves reasonably narrow tasks.

ML algorithms usually construct
predictive/decision models from
data, instead of explicitly
programming them.

A computer program is said to
learn from experience E with
respect to some task T and
some performance measure P, if
its performance on T, as
measured by P, improves with
experience E.
Tom Mitchell, Carnegie Mellon
University, 1998
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More examples

▶ Classification - Given first few words predict the ending of a se

▶ Regression - Based on apartment location, size, floor ...
predict the price

▶ Clustering - People donate blood and we want to group them
by risk-levels (how likely they are to experience and adverse
event) based on their age, weight, gender etc.

▶ Reinforcement Learning - AI playing hide and seek
(https://www.youtube.com/watch?v=kopoLzvh5jY)
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Formalizing

Now we need to formalize the following concepts.

1. Path (line (model))

2. Hungriness (Risk, Cost, Error)

3. Updating path (Optimization, Gradient Descent)
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Model



WHAT IS A MODEL?

A model (or hypothesis)

f : X → Rg

is a function that maps feature vectors to predicted target values.

In conventional regression: g = 1; for classification g is the
number of classes, and output vectors are scores or class
probabilities (details later).
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WHAT IS A MODEL?

f is meant to capture intrinsic patterns of the data, the underlying
assumption being that these hold true for all data drawn from Pxy .

It is easily conceivable how models can range from super simple
(e.g., linear, tree stumps) to very complex (e.g., deep neural
networks) and there are infinitely many choices how we can
construct such functions.

In fact, ML requires constraining f to a certain type of functions.
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HYPOTHESIS SPACES

Without restrictions on the functional family, the task of finding a
“good” model among all the available ones is impossible to solve.

This means: we have to determine the class of our model a priori,
thereby narrowing down our options considerably. We could call
that a structural prior.

The set of functions defining a specific model class is called a
hypothesis space H:

H = {f : f belongs to a certain functional family}
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PARAMETRIZATION

All models within one hypothesis space share a common
functional structure. We usually construct the space as
parametrized family of curves.

We collect all parameters in a parameter vector
ω = (ω1, ω2, . . . , ωd) from parameter space !.

They are our means of fixing a specific function from the family.
Once set, our model is fully determined.

Therefore, we can re-write H as:

H = {fω : fω belongs to a certain functional family

parameterized by ω}
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PARAMETRIZATION

This means: finding the optimal model is perfectly equivalent to
finding the optimal set of parameter values.

The relation between optimization over f ↑ H and optimization
over ω ↑ ! allows us to operationalize our search for the best
model via the search for the optimal value on a d-dimensional
parameter surface.

ω might be scalar or comprise thousands of parameters,
depending on the complexity of our model.
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PARAMETRIZATION

Short remark: In fact, some parameter vectors, for some model
classes, might encode the same function. So the
parameter-to-model mapping could be non-injective.

We call this then a non-identifiable model.

But this shall not concern us here.
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EXAMPLE: UNIVARIATE LINEAR FUNCTIONS

H = {f : f (x) = ω0 + ω1x ,ω ↑ R2
}

θ0 = 1θ0 = 1θ0 = 1θ0 = 1
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EXAMPLE: BIVARIATE QUADRATIC FUNCTIONS

H = {f : f (x) = ω0 + ω1x1 + ω2x2 + ω3x2
1 + ω4x2

2 + ω5x1x2,ω ↑ R6
},

f (x) = 3 + 2x1 + 4x2

x

f (x) = 3 + 2x1 + 4x2+

+ 1x2
1 + 1x2

2

f (x) = 3 + 2x1 + 4x2+

+ 1x2
1 + 1x2

2 + 4x1x2
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SUPERVISED LEARNING EXAMPLE

Imagine we want to investigate how working conditions affect
productivity of employees.

It is a regression task since the target productivity is continuous.

We collect data about worked minutes per week (productivity), how
many people work in the same office as the employee in question,
and the employee’s salary.
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SUPERVISED LEARNING EXAMPLE

How could we construct a model from these data?

We could investigate the data manually and come up with a simple,
hand-crafted rule such as:

The baseline productivity of an employee with salary 3000 and 7
people in the office is 1850 minutes

A decrease of 1 person in the office increases productivity by 30

An increase of the salary by 100 increases productivity by 10

=> Obviously, this is neither feasible nor leads to a good model
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IDEA OF SUPERVISED LEARNING

Goal: Automatically identify the fundamental functional relation in the
data that maps an object’s features to the target.

Supervised learning means we make use of labeled data for
which we observed the outcome.

We use the labeled data to learn a model f.

Ultimately, we use our model to compute predictions for new data
whose target values are unknown.
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LEARNER DEFINITION

The algorithm for finding our f is called learner. It is also called
learning algorithm or inducer.
We prescribe a certain hypothesis space, the learner is our means
of picking the best element from that space for our data set.
Formally, it maps training data D → D (plus a vector of
hyperparameter control settings ω → !) to a model:

I : D↑! ↓ H
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LEARNER DEFINITION

As pseudo-code template it would work like this:

Learner has a defined model space of parametrized functions H.

User passes data set Dtrain and control settings ω.

Learner sets parameters so that model matches data best.

Optimal parameters ε̂ or function f̂ is returned for later usage.
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Model



HOW TO EVALUATE MODELS

When training a learner, we optimize over our hypothesis space, to
find the function which matches our training data best.

This means, we are looking for a function, where the predicted
output per training point is as close as possible to the observed
label.

To make this precise, we need to define now how we measure the
difference between a prediction and a ground truth label pointwise.

© Introduction to Machine Learning – 1 / 9
ML Basics 47 / 598



LOSS

The loss function L (y , f (x)) quantifies the "quality" of the prediction
f (x) of a single observation x:

L : Y →Rg
↑ R.

In regression, we could use the absolute loss L (y , f (x)) = |f (x)↓ y |;

or the L2-loss L (y , f (x)) = (y ↓ f (x))2:
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RISK OF A MODEL

The (theoretical) risk associated with a certain hypothesis f (x)
measured by a loss function L (y , f (x)) is the expected loss

R(f ) := Exy [L (y , f (x))] =
∫

L (y , f (x)) dPxy .

This is the average error we incur when we use f on data from Pxy .

Goal in ML: Find a hypothesis f (x) ↔ H that minimizes risk.
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RISK OF A MODEL

Problem: Minimizing R(f ) over f is not feasible:

Pxy is unknown (otherwise we could use it to construct optimal
predictions).

We could estimate Pxy in non-parametric fashion from the data D,
e.g., by kernel density estimation, but this really does not scale to
higher dimensions (see “curse of dimensionality”).

We can efficiently estimate Pxy , if we place rigorous assumptions
on its distributional form, and methods like discriminant analysis
work exactly this way.

But as we have n i.i.d. data points from Pxy available we can simply
approximate the expected risk by computing it on D.
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EMPIRICAL RISK

To evaluate, how well a given function f matches our training data, we
now simply sum-up all f ’s pointwise losses.

Remp(f ) =
n∑

i=1

L
(

y (i), f
(

x(i)
))

This gives rise to the empirical risk function which allows us to
associate one quality score with each of our models, which encodes
how well our model fits our training data.

Remp : H ↑ R
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EMPIRICAL RISK

The risk can also be defined as an average loss

R̄emp(f ) =
1
n

n∑

i=1

L
(

y (i), f
(

x(i)
))

.

The factor 1
n does not make a difference in optimization, so we will

consider Remp(f ) most of the time.

Since f is usually defined by parameters ω, this becomes:

R : Rd
↑ R

Remp(ω) =
n∑

i=1

L
(

y (i), f
(

x(i) | ω
))
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EMPIRICAL RISK MINIMIZATION

The best model is the model with the smallest risk.

If we have a finite number of models f , we could simply tabulate them
and select the best.

Model ωintercept ωslope Remp(ω)
f1 2 3 194.62
f2 3 2 127.12
f3 6 -1 95.81
f4 1 1.5 57.96
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EMPIRICAL RISK MINIMIZATION

But usually H is infinitely large.

Instead we can consider the risk surface w.r.t. the parameters ω.
(By this I simply mean the visualization of Remp(ω))

Remp(ω) : R
d
↑ R.

Model ωintercept ωslope Remp(ω)
f1 2 3 194.62
f2 3 2 127.12
f3 6 -1 95.81
f4 1 1.5 57.96
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EMPIRICAL RISK MINIMIZATION

Minimizing this surface is called empirical risk minimization (ERM).

ω̂ = argmin
ω→!

Remp(ω).

Usually we do this by numerical optimization.

R : Rd
↑ R.

Model ωintercept ωslope Remp(ω)
f1 2 3 194.62
f2 3 2 127.12
f3 6 -1 95.81
f4 1 1.5 57.96
f5 1.25 0.90 23.40

In a certain sense, we have now reduced the problem of learning to
numerical parameter optimization.
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Optimization



LEARNING AS PARAMETER OPTIMIZATION

We have seen, we can operationalize the search for a model f that
matches training data best, by looking for its parametrization
ω → ! with lowest empirical risk Remp(ω).

Therefore, we usually traverse the error surface downwards; often
by local search from a starting point to its minimum.

✓1

✓
2

R
em

p
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LEARNING AS PARAMETER OPTIMIZATION

The ERM optimization problem is:

ω̂ = argmin
ω→!

Remp(ω).

For a (global) minimum ω̂ it obviously holds that

↑ω → ! : Remp(ω̂) ↓ Remp(ω).

This does not imply that ω̂ is unique.

Which kind of numerical technique is reasonable for this problem
strongly depends on model and parameter structure (continuous
params? uni-modal Remp(ω)?). Here, we will only discuss very simple
scenarios.
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LOCAL MINIMA

If Remp is continuous in ω we can define a local minimum ω̂:

↔ω > 0 ↑ω with
∥∥∥ω̂ ↗ ω

∥∥∥ < ω : Remp(ω̂) ↓ Remp(ω).

Clearly every global minimum is also a local minimum. Finding a local
minimum is easier than finding a global minimum.

●

●

θ

R
em

p(
θ) minimum

●

●

global

local
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LOCAL MINIMA AND STATIONARY POINTS
If Remp is continuously differentiable in ω then a sufficient condition for a local
minimum is that ω̂ is stationary with 0 gradient, so no local improvement is possible:

ω
ωω

Remp(ω̂) = 0

and the Hessian ω2

ωω2 Remp(ω̂) is positive definite. While the neg. gradient points into
the direction of fastest local decrease, the Hessian measures local curvature of Remp.

θ1

θ 2

25
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ω
ωωRemp(ω)

✓1

✓
2

R
em

p

const. pos. def. Hessian
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em
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LEAST SQUARES ESTIMATOR

Now, for given features X → Rn↑p and target y → Rn, we want to find
the best linear model regarding the squared error loss, i.e.,

Remp(ω) = ↘Xω ↗ y↘2
2 =

n∑

i=1

(ω↓x(i) ↗ y (i))2 .

With the sufficient condition for continously differentiable functions it
can be shown that the least squares estimator

ω̂ = (X↓X)↔1X↓y.

is a local minimum of Remp. If X is full-rank, Remp is strictly convex and
there is only one local minimum - which is also global.

Note: Often such analytical solutions in ML are not possible, and we
rather have to use iterative numerical optimization.
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GRADIENT DESCENT

The simple idea of GD is to iteratively go from the current candidate ω[t]

in the direction of the negative gradient, i.e., the direction of the
steepest descent, with learning rate ε to the next ω[t+1]:

ω[t+1] = ω[t]
↗ ε

ϑ

ϑω
Remp(ω

[t]).

✓1

✓
2

R
em

p

✓[0]

We choose a random start ω[0] with risk
Remp(ω[0]) = 76.25.
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GRADIENT DESCENT - EXAMPLE

✓1

✓
2

R
em

p

�↵ @
@✓Remp(✓[0])

Now we follow in the direction of the
negative gradient at ω[0].

✓1

✓
2

R
em

p ✓[1]
We arrive at ω[1] with risk
Remp(ω[1]) ≃ 42.73.
We improved:
Remp(ω[1]) < Remp(ω[0]).
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GRADIENT DESCENT - EXAMPLE

✓1

✓
2

R
em

p �↵ @
@✓Remp(✓[1]) Again we follow in the direction of the

negative gradient, but now at ω[1].

✓1

✓
2

R
em

p

✓[2] Now ω[2] has risk Remp(ω[2]) ≃ 25.08.

© Introduction to Machine Learning – 8 / 11
ML Basics 64 / 598



GRADIENT DESCENT - EXAMPLE

✓1

✓
2

R
em

p We iterate this until some form of con-
vergence or termination.
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✓
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R
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p

✓̂
We arrive close to a stationary ω̂ which
is hopefully at least a local minimum.
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GRADIENT DESCENT - LEARNING RATE

The negative gradient is a direction that looks locally promising to reduce Remp.

Hence it weights components higher in which Remp decreases more.

However, the length of → ω
ωωRemp measures only the local decrease rate, i.e.,

there are no guarantees that we will not go "too far".

We use a learning rate ε to scale the step length in each iteration. Too much can
lead to overstepping and no converge, too low leads to slow convergence.

Usually, a simple constant rate or rate-decrease mechanisms to enforce local
convergence are used

θ[0]
●

θ1

θ 2

good convergence for ε1

θ[0]
●

θ1

θ 2

poor convergence for ε2(< ε1)

θ[0]
●

θ1

θ 2

no convergence for ε3(> ε1)
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FURTHER TOPICS

GD is a so-called first-order method. Second-order methods use
the Hessian to refine the search direction for faster convergence.

There exist many improvements of GD, e.g., to smartly control the
learn rate, to escape saddle points, to mimic second order
behavior without computing the expensive Hessian.

If the gradient of GD is not derived from the empirical risk of the
whole data set, but instead from a randomly selected subset, we
call this stochastic gradient descent (SGD). For large-scale
problems this can lead to higher computational efficiency.
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Regression with L2 Loss



LINEAR REGRESSION

Idea: predict y → R as linear combination of features1:

ŷ = f (x) = ω→x = ω0 + ω1x1 + · · ·+ ωpxp

↭ find loss-optimal params to describe relation y |x

Hypothesis space: H = {f (x) = ω→x | ω → Rp+1
}

1

2

3

−1 0 1 2 3
x1

y

1
Actually, special case of linear model, which is linear combo of basis functions of features ↭ Polynomial Regression Models
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DESIGN MATRIX

Mismatch: ω → Rp+1 vs x → Rp due to intercept term

Trick: pad feature vectors with leading 1, s.t.
x ↑↓ x = (1, x1, . . . , xp)→, and
ω→x = ω0 · 1 + ω1x1 + · · ·+ ωpxp

Collect all observations in design matrix X → Rn↑(p+1)

↭ more compact: single param vector incl. intercept

Resulting linear model:

ŷ = Xω =





1 x(1)
1 ... x(1)

p

1 x(2)
1 ... x(2)

p

...
...

...
1 x(n)

1 ... x(n)
p








ω0
ω1
...
ωp



 =





ω0+ω1x(1)
1 +···+ωpx(1)

p

ω0+ω1x(2)
1 +···+ωpx(2)

p

...
ω0+ω1x(n)

1 +···+ωpx(n)
p





We will make use of this notation in other contexts

© Introduction to Machine Learning – 2 / 9
Supervised Regression 80 / 598



EFFECT INTERPRETATION

Big plus of LM: immediately interpretable feature effects

"Marginally increasing xj by 1 unit increases y by ωj units"
↭ ceteris paribus assumption: x1, . . . , xj↓1, xj+1, . . . , xp fixed

θ0

θ11

0

1

2

3

−1 0 1 2 3
x1

y
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MODEL FIT

How to determine LM fit? ↭ define risk & optimize

Popular: L2 loss / quadratic loss / squared error

L (y , f (x)) = (y ↔ f (x))2 or L (y , f (x)) = 0.5 · (y ↔ f (x))2

1

2

3

−1 0 1 2 3
x1

y

Why penalize residuals r = y ↔ f (x) quadratically?
Easy to optimize (convex, differentiable)
Theoretically appealing (connection to classical stats LM)
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LOSS PLOTS

We will often visualize loss effects like this:

1

2

3

−1 0 1 2 3
x1

y 1.09

0.47

0.0

0.5

1.0

1.5

2.0

−1 0 1
y − f(x)

L(
f(x

), 
y)

Data as y → x1

Prediction hypersurface
↭ here: line

Residuals r = y ↑ f (x)
↭ squares to illustrate loss

Loss as function of residuals
↭ strength of penalty?
↭ symmetric?

Highlighted: loss for
residuals shown on LHS
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OPTIMIZATION

Resulting risk equivalent to sum of squared errors (SSE):

Remp(ω) =
n∑

i=1

(
y (i)

↔ ω→x(i)
)2

Consider example with n = 5 ↭ different models with varying SSE
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OPTIMIZATION

Resulting risk equivalent to sum of squared errors (SSE):

Remp(ω) =
n∑

i=1

(
y (i)

↔ ω→x(i)
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Consider example with n = 5 ↭ different models with varying SSE
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OPTIMIZATION

Resulting risk equivalent to sum of squared errors (SSE):

Remp(ω) =
n∑

i=1

(
y (i)

↔ ω→x(i)
)2

Consider example with n = 5 ↭ different models with varying SSE
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OPTIMIZATION

Resulting risk equivalent to sum of squared errors (SSE):

Remp(ω) =
n∑

i=1

(
y (i)

↔ ω→x(i)
)2

Consider example with n = 5 ↭ different models with varying SSE
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OPTIMIZATION

−2

0

2

4

6

0 2 4 6
x1

y

SSE: 16.86

−2

0

2

4

6

0 2 4 6
x1

y

SSE: 24.29

−2

0

2

4

6

0 2 4 6
x1

y

SSE: 10.61

Intercept ω0 Slope ω1 SSE
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OPTIMIZATION
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Intercept ω0 Slope ω1 SSE
1.80 0.30 16.86
1.00 0.10 24.29
0.50 0.80 10.61

-1.65 1.29 5.88

Instead of guessing, of course, use optimization!
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ANALYTICAL OPTIMIZATION

Special property of LM with L2 loss: analytical solution available

ω̂ → argmin
ω

Remp(ω) = argmin
ω

n∑

i=1

(
y (i)

↔ ω→x(i)
)2

= argmin
ω

↗y ↔ Xω↗2
2

Find via normal equations

εRemp(ω)

εω
= 0

Solution: ordinary-least-squares (OLS) estimator

ω̂ = (X→X)↓1X→y
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