Frankenstein Monster is created from

- 1. Mostly taken from LMU Munich's SLDS I2ML Website
- 2. Some things are also taken from FAST Foundation's slides. YouTube

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview

Intro

Model Types

More examples

Intuition

Formalizing

Model

Regression example

Loss

Optimization

Regression with L2 Loss

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction to Machine Learning

ML-Basics What is Machine Learning?

× 0 × 0 × ×

- 2

◆□▶ ◆□▶ ◆□▶ ◆□▶

Learning goals

- Understand basic terminology of and connections between ML, AI, DL and statistics
- Know the main directions of ML: Supervised, Unsupervised and Reinforcement Learning

MACHINE LEARNING IS CHANGING OUR WORLD

- · Search engines learn what you want
- Recommender systems learn your taste in books, music, movies,...
- · Algorithms do automatic stock trading
- Google Translate learns how to translate text
- Siri learns to understand speech
- DeepMind beats humans at Go
- Cars drive themselves
- Smart-watches monitor your health
- Election campaigns use algorithmically targeted ads to influence voters
- Data-driven discoveries are made in physics, biology, genetics, astronomy, chemistry, neurology,...
- ...

× 0 0 × 0 × ×

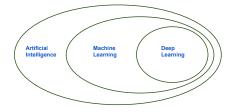
- 12

Introduction to Machine Learning - 1 / 9

<ロト (四) (三) (三) (三)

THE WORLD OF ARTIFICIAL INTELLIGENCE

... and the connections to Machine Learning and Deep Learning



× 0 0 × 0 × ×

・ロト ・日ト ・ヨト ・ヨー うへで

Many people are confused what these terms actually mean.

And what does all this have to do with statistics?

Introduction to Machine Learning - 2 / 9

ARTIFICIAL INTELLIGENCE

- Al is a general term for a very large and rapidly developing field.
- There is no strict definition of AI, but it's often used when machines are trained to perform on tasks which until that time could only be solved by humans or are very difficult and assumed to require "intelligence".
- Al started in the 1940s when the computer was invented. Scientists like Turing and John von Neumann immediately asked the question: If we can formalize computation, can we use computation to formalize "thinking"?
- Al includes machine learning, natural language processing, computer vision, robotics, planning, search, game playing, intelligent agents, and much more.
- Nowadays, AI is a "hype" term that many people use when they should probably say: ML or ... basic data analysis.

× × ×

1

Introduction to Machine Learning - 3 / 9

(日) (四) (三) (三) (三)

MACHINE LEARNING

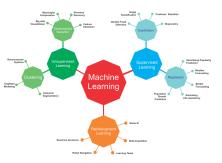


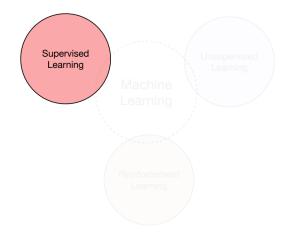
Image via https://www.oreilly.com/library/view/java-deep-learning/ 9781788997454/assets/899ceaf3-c710-4675-ae99-33c76cd6ac2f.png

- Mathematically well-defined and solves reasonably narrow tasks.
- ML algorithms usually construct predictive/decision models from data, instead of explicitly programming them.
- A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. *Tom Mitchell, Carnegie Mellon University, 1998*

× 0 0 × 0 × ×

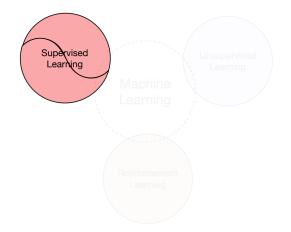
э

Introduction to Machine Learning - 4 / 9



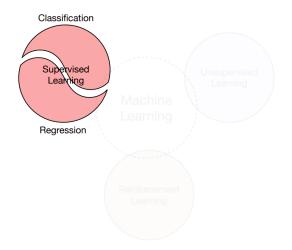
FAST Foundation

(日) (四) (三) (三) (三)

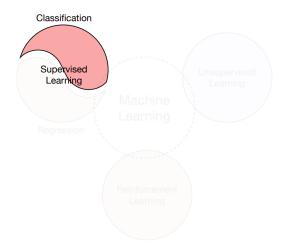


FAST Foundation

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣

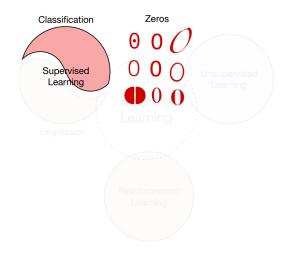


・ロト ・回ト ・ヨト ・ヨト

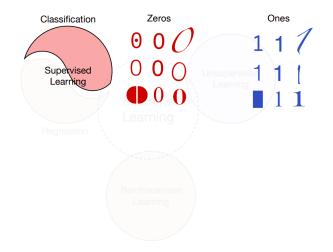


FAST Foundation

(日) (四) (三) (三) (三)



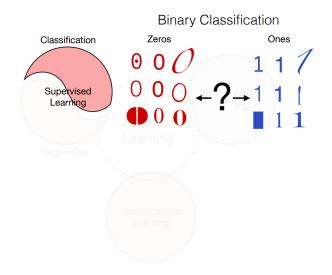
<ロト < 四ト < 回ト < 回ト



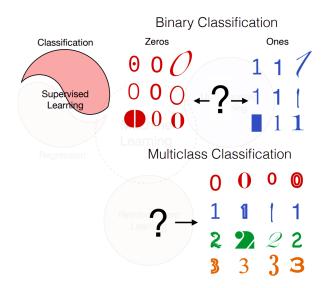
< □ > < □ > < □ > < □ > < □ >

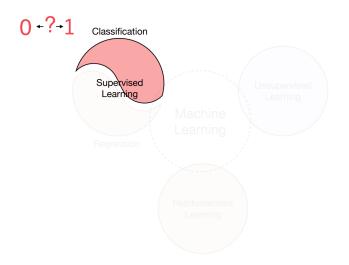
Classification Zeros Ones $\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$ Supervised Learning

<ロト < 四ト < 回ト < 回ト

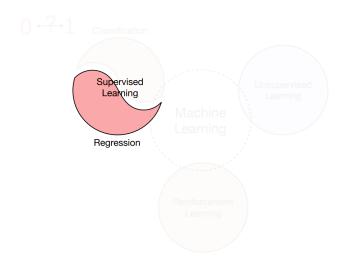


э

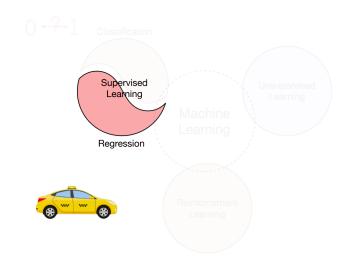




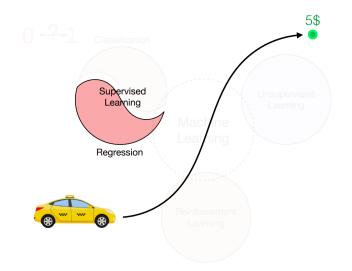
・ロト ・回ト ・ヨト ・ヨト



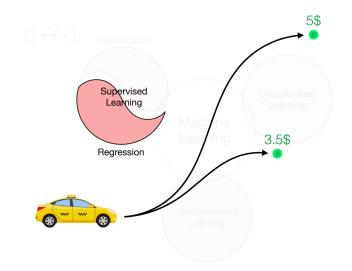
▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国



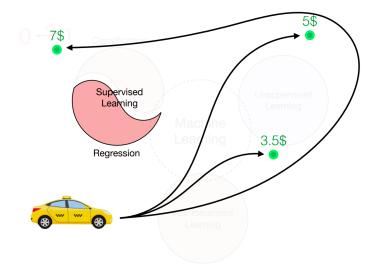
・ロト ・聞 ト ・ ヨト ・ ヨト



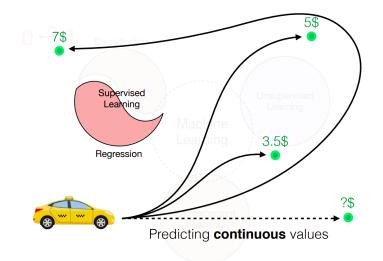
▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国



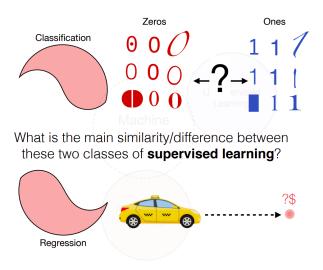
◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → ◎ 圖

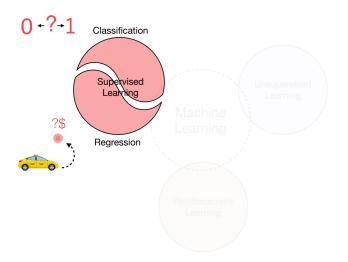


・ロト ・四ト ・ヨト ・ヨト

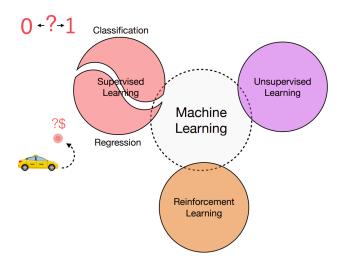


(3)

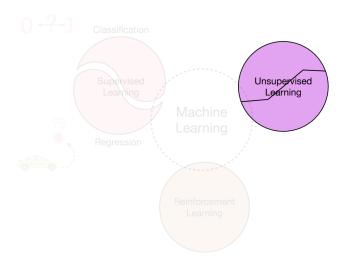




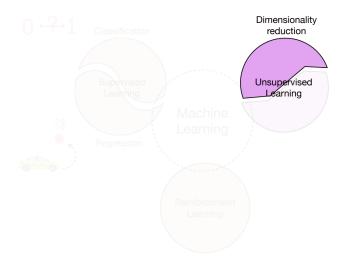
・ロト ・聞 ト ・ ヨト ・ ヨト



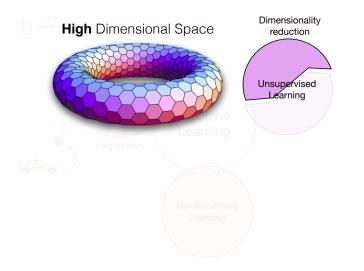
<ロ> <四> <四> <三</p>



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



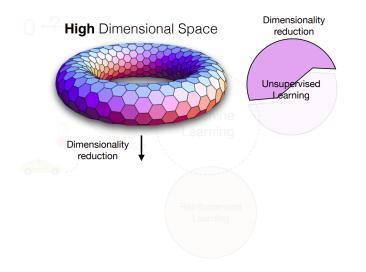
<ロト < 四ト < 回ト < 回ト



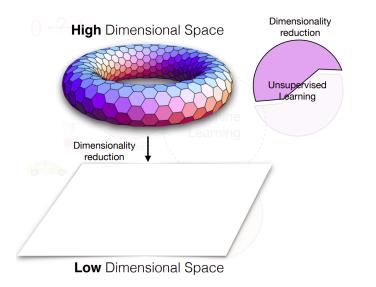
FAST Foundation

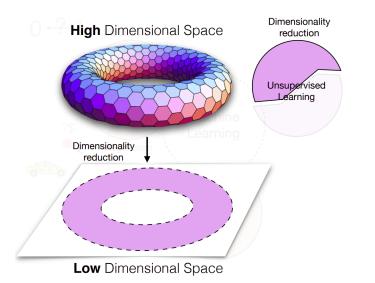
A (1) > A (2) > A

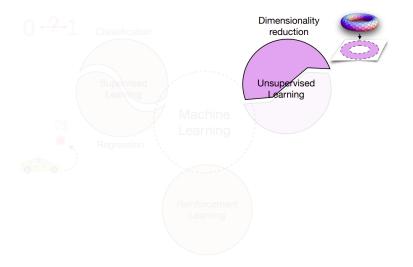
-



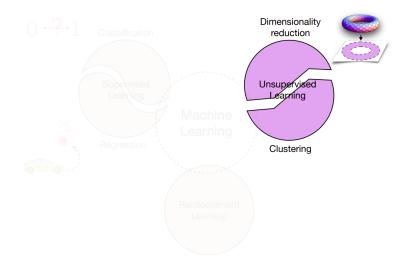
(a)



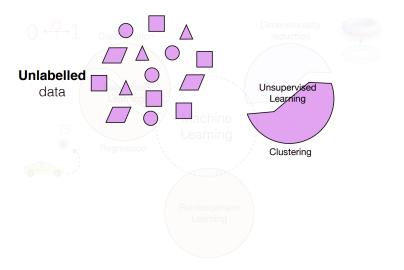




(日) (四) (三) (三) (三)

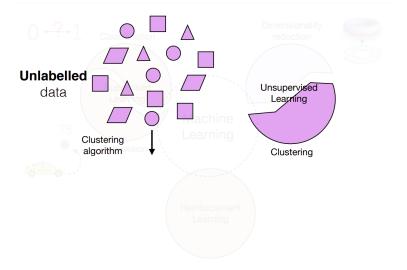


(日) (四) (三) (三) (三)



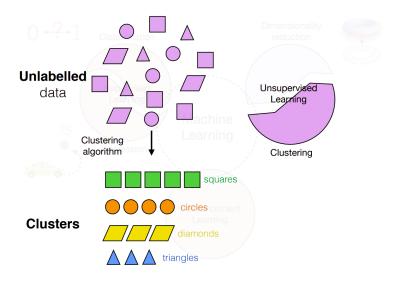
イロト イポト イヨト イヨト

э

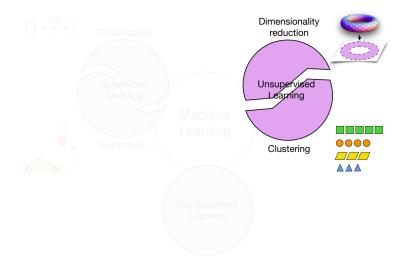


(日)

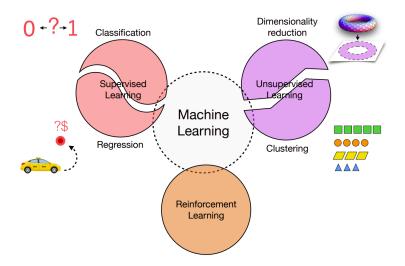
э



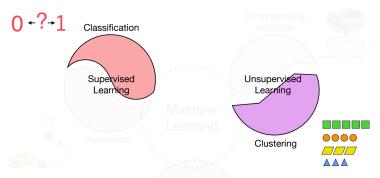
(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <



(日) (四) (三) (三) (三)



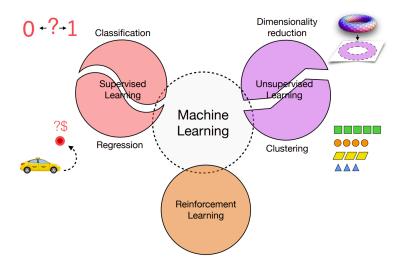
(日) (四) (三) (三) (三)



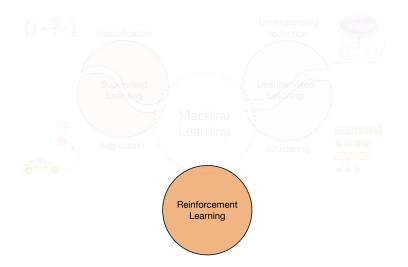
What is the main similarity/difference between classification and clustering?

▲ 同 ▶ → 三 ▶

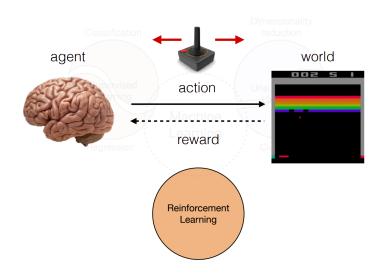
-



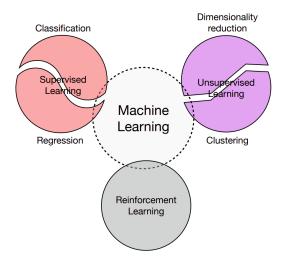
(日) (四) (三) (三) (三)



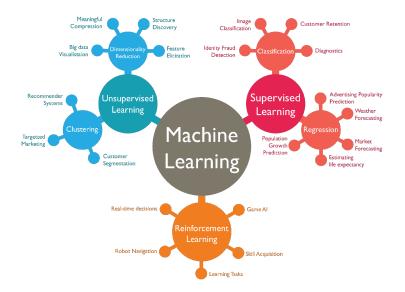
<ロ> <四> <四> <三</p>



・ロト ・四ト ・ヨト



(日) (四) (三) (三) (三)



FAST Foundation

< □ > < □ > < □ > < □ > < □ >

э

More examples

- Classification Given first few words predict the ending of a se
- Regression Based on apartment location, size, floor ... predict the price
- Clustering People donate blood and we want to group them by risk-levels (how likely they are to experience and adverse event) based on their age, weight, gender etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reinforcement Learning - AI playing hide and seek (https://www.youtube.com/watch?v=kopoLzvh5jY)

Forest example 1 / 2

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Forest example 2 / 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Now we need to formalize the following concepts.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. Path (line (model))

Now we need to formalize the following concepts.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. Path (line (model))
- 2. Hungriness (Risk, Cost, Error)

Now we need to formalize the following concepts.

- 1. Path (line (model))
- 2. Hungriness (Risk, Cost, Error)
- 3. Updating path (Optimization, Gradient Descent)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Now we need to formalize the following concepts.

- 1. Path (line (model))
- 2. Hungriness (Risk, Cost, Error)
- 3. Updating path (Optimization, Gradient Descent)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

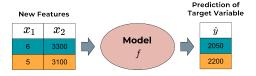
WHAT IS A MODEL?

• A model (or hypothesis)

 $f: \mathcal{X} \to \mathbb{R}^{g}$

is a function that maps feature vectors to predicted target values.

• In conventional regression: *g* = 1; for classification *g* is the number of classes, and output vectors are scores or class probabilities (details later).



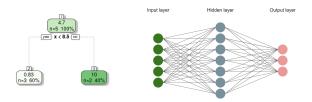
ML Basics

× 0 0 × 0 × ×

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

WHAT IS A MODEL?

- *f* is meant to capture intrinsic patterns of the data, the underlying assumption being that these hold true for *all* data drawn from \mathbb{P}_{xy} .
- It is easily conceivable how models can range from super simple (e.g., linear, tree stumps) to very complex (e.g., deep neural networks) and there are infinitely many choices how we can construct such functions.



• In fact, ML requires **constraining** *f* to a certain type of functions.

ML Basics

31 / 598

크

(日) (四) (三) (三) (三)

HYPOTHESIS SPACES

- Without restrictions on the functional family, the task of finding a "good" model among all the available ones is impossible to solve.
- This means: we have to determine the class of our model *a priori*, thereby narrowing down our options considerably. We could call that a **structural prior**.
- The set of functions defining a specific model class is called a **hypothesis space** \mathcal{H} :

 $\mathcal{H} = \{f : f \text{ belongs to a certain functional family}\}$

× × ×

ML Basics

32 / 598

<ロト <四ト <注入 <注下 <注下 <

PARAMETRIZATION

- All models within one hypothesis space share a common functional structure. We usually construct the space as parametrized family of curves.
- We collect all parameters in a parameter vector $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d)$ from parameter space Θ .
- They are our means of fixing a specific function from the family. Once set, our model is fully determined.
- $\bullet\,$ Therefore, we can re-write ${\cal H}$ as:

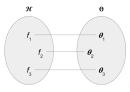
 $\mathcal{H} = \{ \textit{f}_{\theta} : \textit{f}_{\theta} \text{ belongs to a certain functional family} \\ \textit{parameterized by } \theta \}$

× 0 0 × 0 × ×

ML Basics

PARAMETRIZATION

- This means: finding the optimal model is perfectly equivalent to finding the optimal set of parameter values.
- The relation between optimization over *f* ∈ *H* and optimization over *θ* ∈ Θ allows us to operationalize our search for the best model via the search for the optimal value on a *d*-dimensional parameter surface.



• θ might be scalar or comprise thousands of parameters, depending on the complexity of our model.

× × 0 × × ×

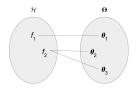
ML Basics

34 / 598

< □ > < □ > < □ > < □ > < □ > < □ > = □

PARAMETRIZATION

- Short remark: In fact, some parameter vectors, for some model classes, might encode the same function. So the parameter-to-model mapping could be non-injective.
- We call this then a non-identifiable model.
- But this shall not concern us here.



× × ×

ML Basics

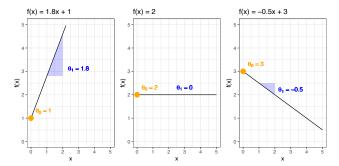
35 / 598

12

(日) (部) (書) (書)

EXAMPLE: UNIVARIATE LINEAR FUNCTIONS

$$\mathcal{H} = \{ f : f(\mathbf{x}) = \theta_0 + \theta_1 x, \theta \in \mathbb{R}^2 \}$$



ML Basics

36 / 598

O X

 $\times \times$

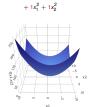
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

EXAMPLE: BIVARIATE QUADRATIC FUNCTIONS

 $\mathcal{H} = \{f: f(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2, \theta \in \mathbb{R}^6\},\$

 $f(x) = 3 + 2x_1 + 4x_2 +$

 $f(x) = 3 + 2x_1 + 4x_2$



 $f(x) = 3 + 2x_1 + 4x_2 +$ $+ 1x_1^2 + 1x_2^2 + 4x_1x_2$

ML Basics

37 / 598

SUPERVISED LEARNING EXAMPLE

Imagine we want to investigate how working conditions affect productivity of employees.

- It is a **regression** task since the target *productivity* is continuous.
- We collect data about worked minutes per week (*productivity*), how many people work in the same office as the employee in question, and the employee's salary.

	Feat	ures x	Target y		
	People in Office (Feature 1) x ₁	Salary (Feature 2) x ₂	Worked Minut (Target Vari		
(4	4300 €	2220		
n = 3	<i>,</i> 12	2700 €	1800		
l	5	3100 €	1920	×	
$x_1^{(2)}$	p =	= 2	$x_2^{(1)}$	y ⁽³⁾	

× × ×

41 / 598

ML Basics

SUPERVISED LEARNING EXAMPLE

How could we construct a model from these data?

We could investigate the data manually and come up with a simple, hand-crafted rule such as:

- The baseline productivity of an employee with salary 3000 and 7 people in the office is 1850 minutes
- A decrease of 1 person in the office increases productivity by 30
- An increase of the salary by 100 increases productivity by 10
- => Obviously, this is neither feasible nor leads to a good model

× 0 0 × 0 × ×

ML Basics

42 / 598

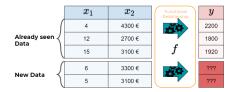
- 2

(日) (部) (書) (書)

IDEA OF SUPERVISED LEARNING

Goal: Automatically identify the fundamental functional relation in the data that maps an object's features to the target.

- **Supervised** learning means we make use of *labeled* data for which we observed the outcome.
- We use the labeled data to learn a model f.
- Ultimately, we use our model to compute predictions for new data whose target values are unknown.



ML Basics

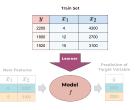
× × 0 × × ×

43 / 598

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

LEARNER DEFINITION

- The algorithm for finding our *f* is called **learner**. It is also called **learning algorithm** or **inducer**.
- We prescribe a certain hypothesis space, the learner is our means of picking the best element from that space for our data set.
- Formally, it maps training data D ∈ D (plus a vector of hyperparameter control settings λ ∈ Λ) to a model:



ML Basics

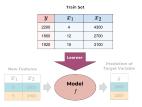
44 / 598

 $\mathcal{I}:\mathbb{D}\times\Lambda\to\mathcal{H}$

LEARNER DEFINITION

As pseudo-code template it would work like this:

- $\bullet\,$ Learner has a defined model space of parametrized functions $\mathcal{H}.$
- User passes data set $\mathcal{D}_{\text{train}}$ and control settings λ .
- Learner sets parameters so that model matches data best.
- Optimal parameters $\hat{\theta}$ or function \hat{f} is returned for later usage.



크

(ロ) (部) (E) (E)

ML Basics

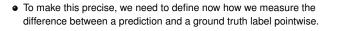
Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

HOW TO EVALUATE MODELS

- When training a learner, we optimize over our hypothesis space, to find the function which matches our training data best.
- This means, we are looking for a function, where the predicted output per training point is as close as possible to the observed label.

Features x			Target y		Prediction \hat{y}		
People in Office (Feature 1) x_1	Salary (Feature 2) x_2		Worked Minutes Week (Target Variable)		Worked Minutes Week (Target Variable)		
4	4300 €		2220	! ≈	2588		
12	2700€		1800	\sim	1644		
5	3100€		1920	1	1870		



0	0	×
X	J	0
	X	×

47 / 598

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

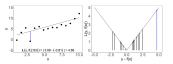
ML Basics

LOSS

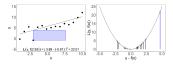
The **loss function** $L(y, f(\mathbf{x}))$ quantifies the "quality" of the prediction $f(\mathbf{x})$ of a single observation \mathbf{x} :

 $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}.$

In regression, we could use the absolute loss $L(y, f(\mathbf{x})) = |f(\mathbf{x}) - y|$;



or the L2-loss $L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$:



ML Basics

× 0 0 × 0 × ×

48 / 598

RISK OF A MODEL

• The (theoretical) **risk** associated with a certain hypothesis *f*(**x**) measured by a loss function *L*(*y*, *f*(**x**)) is the **expected loss**

$$\mathcal{R}(f) := \mathbb{E}_{xy}[L(y, f(\mathbf{x}))] = \int L(y, f(\mathbf{x})) d\mathbb{P}_{xy}.$$

- This is the average error we incur when we use *f* on data from \mathbb{P}_{xy} .
- Goal in ML: Find a hypothesis $f(\mathbf{x}) \in \mathcal{H}$ that **minimizes** risk.

× × ×

ML Basics

49 / 598

RISK OF A MODEL

Problem: Minimizing $\mathcal{R}(f)$ over *f* is not feasible:

- P_{xy} is unknown (otherwise we could use it to construct optimal predictions).
- We could estimate \mathbb{P}_{xy} in non-parametric fashion from the data \mathcal{D} , e.g., by kernel density estimation, but this really does not scale to higher dimensions (see "curse of dimensionality").
- We can efficiently estimate \mathbb{P}_{xy} , if we place rigorous assumptions on its distributional form, and methods like discriminant analysis work exactly this way.

But as we have *n* i.i.d. data points from \mathbb{P}_{xy} available we can simply approximate the expected risk by computing it on \mathcal{D} .

× 0 0 × 0 × ×

50 / 598

(日) (國) (필) (필) (필) 표

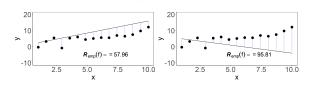
ML Basics

EMPIRICAL RISK

To evaluate, how well a given function *f* matches our training data, we now simply sum-up all *f*'s pointwise losses.

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

This gives rise to the **empirical risk function** which allows us to associate one quality score with each of our models, which encodes how well our model fits our training data.



 $\mathcal{R}_{emp}:\mathcal{H}\to\mathbb{R}$

× 0 × 0 × ×

(ロ) (部) (E) (E)

크

EMPIRICAL RISK

• The risk can also be defined as an average loss

$$\bar{\mathcal{R}}_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$

The factor $\frac{1}{n}$ does not make a difference in optimization, so we will consider $\mathcal{R}_{emp}(f)$ most of the time.

• Since *f* is usually defined by **parameters** θ , this becomes:

$$\mathcal{R}: \mathbb{R}^d \to \mathbb{R}$$

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L\left(\boldsymbol{y}^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

ML Basics

52 / 598

EMPIRICAL RISK MINIMIZATION

The best model is the model with the smallest risk.

If we have a finite number of models *f*, we could simply tabulate them and select the best.

Model	$\theta_{intercept}$	$ heta_{slope}$	$\mathcal{R}_{emp}(oldsymbol{ heta})$
<i>f</i> ₁	2	3	194.62
f ₂	3	2	127.12
<i>f</i> ₃	6	-1	95.81
f ₄	1	1.5	57.96

× 0 0 × 0 × ×

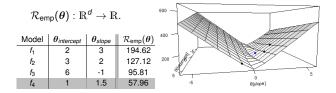
ML Basics

53 / 598

EMPIRICAL RISK MINIMIZATION

But usually \mathcal{H} is infinitely large.

Instead we can consider the risk surface w.r.t. the parameters θ . (By this I simply mean the visualization of $\mathcal{R}_{emp}(\theta)$)



ML Basics

54 / 598

- 2

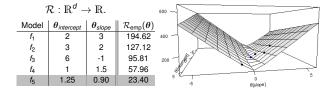
(日) (월) (분) (분)

EMPIRICAL RISK MINIMIZATION

Minimizing this surface is called empirical risk minimization (ERM).

$$\hat{ heta} = \mathop{\mathrm{arg\,min}}_{oldsymbol{ heta}\in\Theta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}).$$

Usually we do this by numerical optimization.



In a certain sense, we have now reduced the problem of learning to **numerical parameter optimization**.

ML Basics

× 0 0 × 0 × ×

55 / 598

- 2

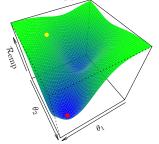
(日) (部) (目) (目) (日)

Optimization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

LEARNING AS PARAMETER OPTIMIZATION

- We have seen, we can operationalize the search for a model *f* that matches training data best, by looking for its parametrization
 θ ∈ Θ with lowest empirical risk R_{emp}(θ).
- Therefore, we usually traverse the error surface downwards; often by local search from a starting point to its minimum.



× 00 × ×

ML Basics

57 / 598

æ

▲□> ▲圖> ▲国> ▲国>

LEARNING AS PARAMETER OPTIMIZATION

The ERM optimization problem is:

$$\hat{oldsymbol{ heta}} = rgmin_{oldsymbol{ heta}\in\Theta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}).$$

For a (global) minimum $\hat{\theta}$ it obviously holds that

$$\forall oldsymbol{ heta} \in \Theta: \quad \mathcal{R}_{\mathsf{emp}}(\hat{oldsymbol{ heta}}) \leq \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}).$$

This does not imply that $\hat{\theta}$ is unique.

Which kind of numerical technique is reasonable for this problem strongly depends on model and parameter structure (continuous params? uni-modal $\mathcal{R}_{emp}(\theta)$?). Here, we will only discuss very simple scenarios.

× × ×

ML Basics

58 / 598

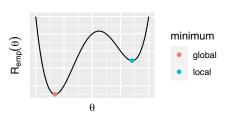
<ロ> (四) (四) (四) (四) (四) (四) (四)

LOCAL MINIMA

If \mathcal{R}_{emp} is continuous in θ we can define a **local minimum** $\hat{\theta}$:

$$\exists \epsilon > \mathsf{0} \; \forall \boldsymbol{\theta} \; \mathsf{with} \; \left\| \boldsymbol{\hat{\theta}} - \boldsymbol{\theta} \right\| < \epsilon : \quad \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\hat{\theta}}) \leq \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}).$$

Clearly every global minimum is also a local minimum. Finding a local minimum is easier than finding a global minimum.



ML Basics

59 / 598

(日) (四) (문) (문) (문)

X

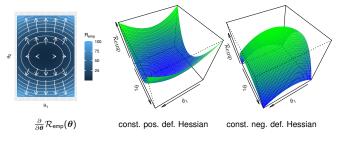
 $\times \times$

LOCAL MINIMA AND STATIONARY POINTS

If \mathcal{R}_{emp} is continuously differentiable in θ then a sufficient condition for a local minimum is that $\hat{\theta}$ is stationary with 0 gradient, so no local improvement is possible:

$$rac{\partial}{\partial oldsymbol{ heta}} \mathcal{R}_{ ext{emp}}(\hat{oldsymbol{ heta}}) = \mathbf{0}$$

and the Hessian $\frac{\partial^2}{\partial \theta^2} \mathcal{R}_{emp}(\hat{\theta})$ is positive definite. While the neg. gradient points into the direction of fastest local decrease, the Hessian measures local curvature of \mathcal{R}_{emp} .



60 / 598

< □ > < □ > < □ > < □ > < □ > < □ > = □

ML Basics

LEAST SQUARES ESTIMATOR

Now, for given features $\mathbf{X} \in \mathbb{R}^{n \times p}$ and target $\mathbf{y} \in \mathbb{R}^{n}$, we want to find the best linear model regarding the squared error loss, i.e.,

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \| \mathbf{X} oldsymbol{ heta} - \mathbf{y} \|_2^2 = \sum_{i=1}^n (oldsymbol{ heta}^ op \mathbf{x}^{(i)} - y^{(i)})^2 \;.$$

With the sufficient condition for continously differentiable functions it can be shown that the **least squares estimator**

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

is a local minimum of $\mathcal{R}_{emp}.$ If **X** is full-rank, \mathcal{R}_{emp} is strictly convex and there is only one local minimum - which is also global.

Note: Often such analytical solutions in ML are not possible, and we rather have to use iterative numerical optimization.

ML Basics

× 0 0 × 0 × ×

61 / 598

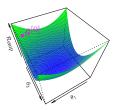
(日) (문) (문) (문) (문)

GRADIENT DESCENT

The simple idea of GD is to iteratively go from the current candidate $\theta^{[t]}$ in the direction of the negative gradient, i.e., the direction of the steepest descent, with learning rate α to the next $\theta^{[t+1]}$:

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \alpha \frac{\partial}{\partial \boldsymbol{\theta}} \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}^{[t]}).$$

× 0 0 × 0 × ×



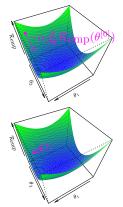
We choose a random start $\theta^{[0]}$ with risk $\mathcal{R}_{emp}(\theta^{[0]}) = 76.25$.

62 / 598

æ

(日) (四) (三) (三) (三)

GRADIENT DESCENT - EXAMPLE



Now we follow in the direction of the negative gradient at $\theta^{[0]}$.

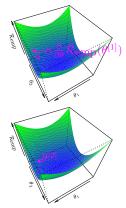
× 0 0 × 0 × ×

We arrive at $\theta^{[1]}$ with risk $\mathcal{R}_{emp}(\theta^{[1]}) \approx 42.73$. We improved: $\mathcal{R}_{emp}(\theta^{[1]}) < \mathcal{R}_{emp}(\theta^{[0]})$.

ML Basics

63 / 598

GRADIENT DESCENT - EXAMPLE

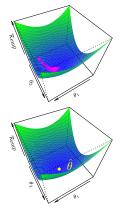


Again we follow in the direction of the negative gradient, but now at $\theta^{[1]}$.

× × ×

Now $heta^{[2]}$ has risk $\mathcal{R}_{emp}(heta^{[2]}) pprox$ 25.08.

GRADIENT DESCENT - EXAMPLE



We iterate this until some form of convergence or termination.

× 0 0 × 0 × ×

We arrive close to a stationary $\hat{\theta}$ which is hopefully at least a local minimum.

ML Basics

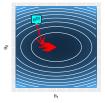
65 / 598

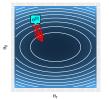
- E

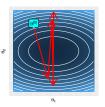
◆□▶ ◆□▶ ◆□▶ ◆□▶

GRADIENT DESCENT - LEARNING RATE

- The negative gradient is a direction that looks locally promising to reduce \mathcal{R}_{emp} .
- Hence it weights components higher in which \mathcal{R}_{emp} decreases more.
- However, the length of $-\frac{\partial}{\partial \theta} \mathcal{R}_{emp}$ measures only the local decrease rate, i.e., there are no guarantees that we will not go "too far".
- We use a learning rate α to scale the step length in each iteration. Too much can lead to overstepping and no converge, too low leads to slow convergence.
- Usually, a simple constant rate or rate-decrease mechanisms to enforce local convergence are used







・ロト ・母 ・ ・ キャ ・ キャ ・ ちゃうくろう

FURTHER TOPICS

- GD is a so-called first-order method. Second-order methods use the Hessian to refine the search direction for faster convergence.
- There exist many improvements of GD, e.g., to smartly control the learn rate, to escape saddle points, to mimic second order behavior without computing the expensive Hessian.
- If the gradient of GD is not derived from the empirical risk of the whole data set, but instead from a randomly selected subset, we call this **stochastic gradient descent** (SGD). For large-scale problems this can lead to higher computational efficiency.

× × 0 × × ×

ML Basics

67 / 598

1

(日) (四) (三) (三) (三)

Regression with L2 Loss

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

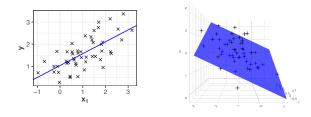
LINEAR REGRESSION

• Idea: predict $y \in \mathbb{R}$ as **linear** combination of features¹:

$$\hat{\mathbf{y}} = f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 + \theta_1 x_1 + \dots + \theta_{\rho} x_{\rho}$$

 \rightsquigarrow find loss-optimal params to describe relation $y|\mathbf{x}|$

• Hypothesis space: $\mathcal{H} = \{f(\mathbf{x}) = \boldsymbol{\theta}^{\top}\mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^{p+1}\}$



1 Actually energial case of linear model, which is linear combo of basic functions of features --- Polynomial Bearseeinn Models

Supervised Regression

79 / 598

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

DESIGN MATRIX

- Mismatch: $\theta \in \mathbb{R}^{p+1}$ vs $\mathbf{x} \in \mathbb{R}^p$ due to intercept term
- Trick: pad feature vectors with leading 1, s.t.

•
$$\mathbf{x} \mapsto \mathbf{x} = (1, x_1, \dots, x_p)^\top$$
, and

•
$$\boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 \cdot \mathbf{1} + \theta_1 x_1 + \dots + \theta_p x_p$$

- Collect all observations in design matrix X ∈ ℝ^{n×(p+1)}
 → more compact: single param vector incl. intercept
- Resulting linear model:

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta} = \begin{pmatrix} 1 & x_1^{(1)} \dots & x_p^{(1)} \\ 1 & x_1^{(2)} \dots & x_p^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & x_1^{(n)} \dots & x_p^{(n)} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} = \begin{pmatrix} \theta_0 + \theta_1 x_1^{(1)} + \dots + \theta_p x_p^{(1)} \\ \theta_0 + \theta_1 x_1^{(2)} + \dots + \theta_p x_p^{(2)} \\ \vdots \\ \theta_0 + \theta_1 x_1^{(n)} + \dots + \theta_p x_p^{(n)} \end{pmatrix}$$

• We will make use of this notation in other contexts

Supervised Regression

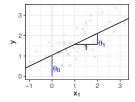
× 0 0 × 0 × ×

80 / 598

<ロト <四ト <注入 <注下 <注下 <

EFFECT INTERPRETATION

- Big plus of LM: immediately interpretable feature effects
- "Marginally increasing x_j by 1 unit increases y by θ_j units"
 → ceteris paribus assumption: x₁,..., x_{i-1}, x_{j+1},..., x_p fixed



Call: lm(formula = y ~ x_1, data = dt_univ)

Residuals: Min 10 Median 30 Max -1.18346 -0.34727 -0.00766 0.31500 1.04284 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.03727 0.11560 9.131 4.55e-12 *** ×_1 0.53521 0.08219 6.512 4.13e-08 *** ---Signif. codes: 0 '***' 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5327 on 48 degrees of freedom Multiple R-squared: 0.469, Adjusted R-squared: 0.458 F-statistic: 42.4 on 1 and 48 DF, p-value: 4.129e-08

Supervised Regression

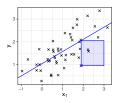
81 / 598

< □ > < □ > < □ > < □ > < □ > < □ > = □

MODEL FIT

- How to determine LM fit? ~→ define risk & optimize
- Popular: L2 loss / quadratic loss / squared error

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$$
 or $L(y, f(\mathbf{x})) = 0.5 \cdot (y - f(\mathbf{x}))^2$



- Why penalize **residuals** $r = y f(\mathbf{x})$ quadratically?
 - Easy to optimize (convex, differentiable)
 - Theoretically appealing (connection to classical stats LM)

Supervised Regression

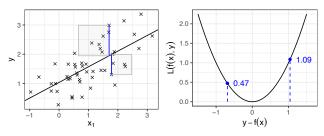
82 / 598

æ

(ロ) (部) (E) (E)

LOSS PLOTS

We will often visualize loss effects like this:



0 0 X X 0 X X

- Data as y ~ x₁
- Prediction hypersurface ~ here: line
- Residuals r = y − f(x)
 → squares to illustrate loss

Supervised Regression

- Loss as function of residuals
 strength of penalty?
 symmetric?
- Highlighted: loss for residuals shown on LHS

83 / 598

(日) (四) (三) (三) (三)

~ ~ ~ ~

• Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2$$

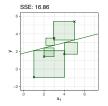
• Consider example with $n = 5 \rightsquigarrow$ different models with varying SSE

Supervised Regression

• Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2$$

• Consider example with $n = 5 \rightsquigarrow$ different models with varying SSE



Supervised Regression

85 / 598

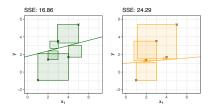
æ

(日) (월) (분) (분)

• Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2$$

• Consider example with $n = 5 \rightsquigarrow$ different models with varying SSE



Supervised Regression

86 / 598

X

 $\times \times$

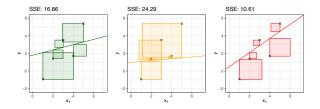
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2$$

× 00 × 0 × ×

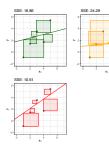
• Consider example with $n = 5 \rightsquigarrow$ different models with varying SSE



Supervised Regression

87 / 598

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



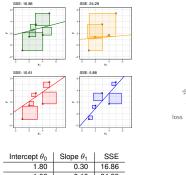
Intercept θ_0	Slope θ_1	SSE
1.80	0.30	16.86
1.00	0.10	24.29
0.50	0.80	10.61

Supervised Regression

× × ×

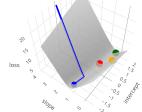
88 / 598

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



0 0 X X 0 X X

1.80	0.30	16.86
1.00	0.10	24.29
0.50	0.80	10.61
-1.65	1.29	5.88



Instead of guessing, of course, use optimization!

Supervised Regression

89 / 598

2

<ロ> (四) (四) (三) (三) (三)

ANALYTICAL OPTIMIZATION

• Special property of LM with L2 loss: analytical solution available

$$\begin{split} \hat{\boldsymbol{\theta}} \in & \arg\min_{\boldsymbol{\theta}} \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2 \\ &= \arg\min_{\boldsymbol{\theta}} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_2^2 \end{split}$$

• Find via normal equations

$$\frac{\partial \mathcal{R}_{emp}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}$$

• Solution: ordinary-least-squares (OLS) estimator

$$oldsymbol{\hat{ heta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$$

Supervised Regression

90 / 598

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで